Technology Blog

Home » Posts tagged 'Application Migration Methodology'

Tag Archives: Application Migration Methodology

The Deep Dive on ‘Well-Architected Framework’ of AWS, Azure & Google Cloud !


Brief Summary:

In this article today, I will draw some insights of cloud’s well-architected framework of all three major cloud service providers. Firstly you will get some idea and background on why these well-architected framework and it’s pillars/principles is really needed for any business in their digital transformation journey and then I will slightly focus on life-cycle of well-architected framework from all three cloud services providers along with similarities/dissimilarities and then finally I will draw some attention on some sorts of approach each provider is following and how they are getting benefitted to their partners and business.         

Real need and importance of cloud well-architected framework in today’s digital transformation:

In today digital world, every cloud service provider in their digital transformation journey offers a large number of services and these are be it on cloud infrastructure | IoT | edge computing | software defined | data science | 5G | Networking | cyber security and so on, these services are growing/will grow very rapidly in future.  A business may consume one or more these services in various ways and each one can be configured in different ways. On the other side, what is important to understand that how on-premise hosted application (legacy, custom or inhouse, COTS, Open Source) is currently operating and how it’s can be transformed/migrated into public or private cloud.

Well this is not new, based on the cloud assessment or application rationalization through R-LANE (for example, Gartner has five R strategies model – rehost, replatform, refactor, rebuild, replace), the  application modernization and it’s migration methodologies for any on-premise hosted application can be decided whether this is either to be lift and shift (rehost) or retire the legacy application and replace it with cloud-native (replace) or with some modification in the application (replatform) or rearchitected the application (re-factor) or rebuild (rewrite the application from scratch) prior migrating them to the cloud. Each application is different and therefore deploying an application to the cloud is usually not a trivial task.

So, based on cloud assessment and rationalization results, the roadmap of any application’s modernization strategy and its cloud migration methodology are usually defined. To host or migrate these various kinds of applications in public/private/hybrid cloud and even to consume large number of cloud services along with, each cloud service provides a set of well-defined architecture, design principles and best practices those are precisely to be followed by practitioner. These set of standard architecture are to ensure that these applications are migrated smoothly, well optimized and secured, managed their operations effectively in a respective cloud.

Well-architected framework life-cycle from all three major cloud service providers:

Several years back, all major cloud service providers (such as Amazon, Microsoft and Google) has released their well-architected framework or architecture framework, they are revisiting and improving these on a regular basis. AWS has very recently announced their eighth version of the Framework since 2012.

https://aws.amazon.com/blogs/architecture/announcing-the-new-version-of-the-well-architected-framework/

In the similar way, Microsoft has also announced their revised Azure well-architected framework

https://azure.microsoft.com/en-us/blog/introducing-the-microsoft-azure-wellarchitected-framework/

Google has also released recently their updated/revised architecture framework guide:

https://cloud.google.com/blog/products/gcp/new-google-cloud-architecture-framework-guide

Well-architected framework pillars or design principles:

So, we talk little bit on the life cycle of their architecture framework and now let’s have a detail understanding on these set of well-defined architecture pillars or design principles

Amazon’s AWS and Microsoft Azure exactly follow the similar naming conventions so called “5 pillars of well-architected framework” where as Google Cloud’s architecture framework covers the same all in their 4 key architecture principles/pillars.

Amazon AWS 5-pillars of well-architected framework

As per Amazon, AWS well-architected framework helps cloud architects to build secure, high-performing, resilient, and efficient infrastructure for their applications and workloads for their business. Based on five pillars AWS provides a consistent approach for customers and partners to evaluate their cloud architectures, and implement designs that can scale over time.

Below are the five pillars of AWS well-architected framework and their purpose: 

  • Operational Excellence – focuses on running and monitoring systems to deliver business value, and continually improving processes and procedures
  • Security – focuses on protecting information and systems
  • Reliability – focuses on ensuring a workload performs its intended function correctly and consistently when it’s expected to
  • Performance Efficiency – focuses on using IT and computing resources efficiently
  • Cost Optimization – focuses on avoiding unnecessary costs

Below figure represents high-level pictorial view of AWS 5-pillars of well-architected framework

Figure-1: AWS 5-Pillars of ‘Well-Architected Framework’

Microsoft Azure 5-pillars of well-architected framework

As per Microsoft, the Azure Well-Architected Framework provides a set of technical guidance that can be used to improve the quality of a workload wherein partners can leverage this guidance to enable customers to design well-architected and high-quality workloads on Azure. The framework consists of below five pillars of Azure well-architected framework and their purpose: 

  • Cost Optimization – managing costs to maximize the value delivered to business.
  • Reliability – the ability of a system to recover from failures and continue to function
  • Security – protecting applications and data from threats.
  • Performance Efficiency – the ability of a system to adapt to changes in load.
  • Operational Excellence – operations processes that keep a system running in production.

Below figure represents high-level pictorial view of Azure 5-pillars of well-architected framework

Figure-2: Azure 5-Pillars of ‘Well-Architected Framework’

Google GCP 4-key architecture principles/pillars

Likewise, Amazon and Microsoft, the Google too have 4-key architecture principles/pillars those covers all 5 similar pillars of what Amazon and Microsoft is having.

Google cloud’s architecture framework provides a set of best practices and implementation guidance to architects on their products and services to aid application design choices based on their unique business needs. The framework provides a foundation for building and improving their Google cloud deployments to ensure standardization and achieve consistency.

The Google 4 key architecture principles/pillars and their purpose are as below:

  • Operational excellence – guidance on how systems efficiently running, managing, and monitoring that deliver business value
  • Security, privacy, and compliance – guidance on appropriate security controls, approach privacy, and meet compliance levels and standards
  • Reliability – guidance on how to build reliable and highly available solutions
  • Performance and cost optimization – suggestions on various available tools to tune your applications for a better end-user experience and analyze the cost of operation while maintaining an acceptable level of service

Below figure represents high-level pictorial view of 4-key architecture principles/pillars of Google cloud’s architecture framework.

Figure-3: 4-Principles of ‘Google Cloud Platform Architecture Framework’

Cloud provider’s approach and benefits of each their well-architected framework:

In previous section, I have brief explanation on each well-architected framework (pillars/principles), their purpose and pictorial view from all three cloud providers and you might have observed the purpose of each is very similar but what may be differ from each that’s their approach, each service provider has slightly different approach to implement their framework.

Amazon AWS Approach: Apart from dedicated focused training to build the internal distributed decision-making capabilities in architected framework, below are the approach which Amazon follows usually:  

  • The AWS WA (well-architected) tool, available at no cost in the AWS Management Console, provides a mechanism for regularly evaluating customer workloads, identifying high risk issues, and recording their improvements.  
  • AWS well-architected partner program members have in-depth training on the well-architected framework that can help partners architect to implement best practices, measure the state of customer workloads, and make improvements where assistance is required.
  • The Lenses extend the guidance offered by AWS well-architected to specific industry and technology domains, such as machine learning, analytics, serverless, high performance computing (HPC), IoT (Internet of Things), and financial services. to fully evaluate the specific industry and technology domain workloads, use applicable lenses together with the AWS well-architected framework and it’s five pillars.

Microsoft Azure Approach: Similar to Amazon, Microsoft does also carry a focused and detailed approach for their well-architected framework by using five pillars, below are the approach which Microsoft follows:  

  • Detailed study on framework content, reference material, and samples those are available in the Azure Architecture Center
  • Taking a deep-dive Azure well-architected review on Microsoft assessments through an online tool
  • Building a great (secure, scalable, high-performing) solution with Microsoft Azure well-architected framework on Microsoft learn.
  • A cloud adoption framework which is a collection of artifacts, implementation guidance & tools from Microsoft to accelerate customers cloud adoption journey and managing their cloud portfolio
  • By providing technical guidance and best practices to architect workloads, Microsoft partners enables business to define, deploy and manage well architected workloads on Azure.

Google Cloud Approach: Google’s framework recommends reviewing their “System Design Considerations” first then follow their 4-key architecture principles/pillars and then enters into a deep-dive into others process below such as discover, evaluate and review based on business needs. This framework is modular so customer can pick and choose process which is most relevant to them

  • Discover: Use the framework as a discovery guide for Google Cloud Platform offerings and learn how the various pieces fit together to build solutions.  
  • Evaluate:  Use the design questions outlined with a detailed thought process while business is thinking about their system design. If they are unable to answer the design question, then they can review the highlighted Google Cloud services and features to address them.
  • Review:  If customer is already on Google Cloud, use the recommendations process to verify if customer is following best practices or as a pulse check to review before deploying to production.

Conclusion:

So, finally we are able to cover the below topics on well-architected framework from all three major services providers

  • Why a cloud well-architected framework and its pillars is needed for business
  • Life cycle of a well-architected framework, its purpose and a pictorial representation for each service providers
  • Similarities /dissimilarities of each well-architected framework from each
  • Some sorts of approach that each cloud service provider is following and how they are getting benefitted to their partners and businesses.

Rajeev Ujjwal has more than 18 years of transformation delivery experience in cloud computing, infrastructure, directory service, and cyber security with larger global customers. He is a senior cloud consultant and successfully delivered various kind of global project delivery such as greenfield, consolidation, separation and migration.